
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 4206–4218
Subsonic compressible flow in two-sided lid-driven cavity.
Part I: Equal walls temperatures
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Abstract

This paper presents a numerical study of the laminar, viscous, subsonic compressible flow in a two-dimensional, two-sided, lid-driven
cavity using a multi-domain spectral element method. The flow is driven by steadily moving two opposite walls vertically in opposite
directions. All the bounding walls have equal temperatures. The results of the simulations are used to investigate the effects of the cavity
aspect ratio, the Reynolds number and the Mach number on the flow. At lower Reynolds numbers, the flow pattern consists of two sep-
arate co-rotating vortices contiguous to the moving walls. For higher Reynolds numbers, initially a two-vortex flow is formed, which
eventually turns into a single elliptical vortex occupying most of the cavity. For a higher aspect ratio, the flow patterns are dissimilar
in that the streamlines become more and more elliptic. For aspect ratios as high as 2.5, at high Reynolds numbers, a three-vortex stage
is formed. It is found that the compressibility effects are not very significant for Mach numbers less than 0.4. Dissipation of kinetic energy
into internal energy changes the temperature field especially near the boundaries. Boundary layer studies suggest that the velocity and
temperature boundary layer thicknesses are lower for higher Reynolds numbers. For engineering purposes, these thicknesses can be
approximated by the existing flat-plate solutions.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a numerical investigation of the sub-
sonic compressible laminar flow in a two-sided lid-driven
cavity using a multi-domain spectral element method.
The fluid flow in a closed cavity driven by tangentially
moving walls in opposite directions is a benchmark flow
geometry for testing numerical techniques. The flow
enclosed in a simple bounded domain comprises of crucial
wall effects, yet, any geometrical impediments are absent.

In the classical problem of one-sided lid-driven cavity
[1], one of the sidewalls is moving either steadily or in a
time-dependent manner tangentially to itself. This configu-
ration has been considered comprehensively, both experi-
mentally and numerically [2]. In recent years, the flow
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induced by the motion of two opposite walls in antiparallel
directions, i.e. the two-sided lid-driven cavity flow, has also
been explored [3,4]. This configuration is considered in this
work for a subsonic compressible flow.

A review of all the studies on the one-sided lid-driven
cavity would exceed the scope of this work. An excellent
review on the single-lid-driven cavity has been provided
by Shankar and Deshpande [5] in which the large variety
of incompressible flow phenomena in the lid-driven cavity
are summarized as eddies, secondary flows, complex
three-dimensional (3D) patterns [6], chaotic particle
motions, instabilities, transition, and turbulence. Here, we
provide a brief review of previous works. Lid-driven cavity
flows have been studied both experimentally and numeri-
cally for several years. Some of the key investigations into
the lid-driven cavity flow include the first major research in
the setting of steady two-dimensional one-sided lid-driven
cavity flow by Burggraf [1] for a square cavity and by
Pan and Acrivos [7] for other geometrical aspect ratios.
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Nomenclature

c
ffiffiffiffiffiffiffiffiffiffi
pc=q

p
speed of sound

cp constant pressure specific heat of the fluid
cv constant volume specific heat of the fluid
F flux vector in x-direction
G flux vector in y-direction
h convective heat transfer coefficient
L length
Lf reference length
Lw,top length of the top wall
Lw,bottom length of the bottom wall
Lw,left length of the left wall
Lw,right length of the right wall
Lh length of the horizontal walls
Lv length of the vertical walls
Mf U �f =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cR�T �f

p
reference Mach number

Ma uM f=
ffiffiffiffi
T
p

Mach number
p qT=cM2

f pressure of the fluid
Pr c�pl

�=j� Prandtl number
q heat flux
~Q vector of solution unknowns
R gas constant
Re q*U*L*/l* Reynolds number
Ref q�f U �f L�f =l

� reference Reynolds number
t time
T temperature
Tf reference temperature
Ti initial temperature
Tw,left temperature of the left wall
Tw,right temperature of the right wall
u, v velocity of the fluid in x and y directions, respec-

tively

Vwall wall velocity
Vw,left velocity of the left wall
Vw,right velocity of the right wall
Uf reference velocity
x, y, z spatial coordinates
w depth of the cavity in z-direction

Greek symbols

c ratio of the specific heats of the fluid
C aspect ratio of the cavity
d boundary layer thickness
dV velocity boundary layer thickness
dT thermal boundary layer thickness
j thermal conductivity
l dynamic viscosity
q density
s stress tensor

Subscripts

i initial
f reference variable
t,x,y derivative with respect to variable t, x and y,

respectively

Superscripts

– averaged quantity
? vector
� physical space variable
a advective flux
v viscous flux
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Pan and Acrivos [7] showed that the two-dimensional cav-
ity flow eddy structure in a rectangular cavity is highly
dependant on the aspect ratio. These two-dimensional pat-
terns were, however, not observed experimentally [7]. In
fact, until 1984, most of the experimental studies did not
model the same flow that was of interest to the numerical
investigators, i.e., a flow driven by a flat impermeable lid
[8]. For example, Pan and Acrivos [7] performed visualiza-
tion of a cavity flow driven by a circular cylinder, and the
experiments of Bogatyrev and Gorin [9] were typical of
cavity experiments conducted in channel cutouts where
the lid was the overlying stream of fluid, leading to mixing
between the fluid in the cavity and the external stream. A
desire to learn more about the physics of lid-driven cavity
flows and the need for a benchmark solution for numerical
modelers prompted a set of experiments by Koseff and
Street [2,10,11] who confirmed the flow patterns predicted
numerically. The findings of Pan and Acrivos [7] were later
extended by Goodrich et al. [12] and Shen [13] who numer-
ically calculated the transition to time-dependent two-
dimensional cavity flows. Motivated by the application to
coating processes, a variant of one-sided rectangular lid-
driven cavity was investigated by Aidun et al. [14] and Ben-
son and Aidun [15]. Aidun et al. [14] showed that cavity
flows were directly relevant to coaters and generalized cav-
ity flows as dynamical systems.

The one-sided lid-driven cavity problem was generalized
to the two-sided lid-driven cavity problem by Kuhlmann
et al. [3]. They investigated two- and three-dimensional
flows experimentally and numerically for different aspect
ratios and Reynolds numbers. In addition to their identifi-
cation of the hydrodynamic stability and pattern forma-
tion, they found that the two-sided lid-driven cavity is
well-suited for the study of viscous corner eddies [16,17]
and the corner singularity [18]. Kelmanson and Lonsdale
[19] and Brons and Hartnack [20] found that in a two-sided
lid-driven cavity, when the flow field changes due to
unsteadiness of the flow or an external change of parame-
ters or boundary conditions, the streamline topology may
also change. They also found that when the flow field is
varied through a degenerate configuration that is structur-
ally unstable, the streamline pattern can bifurcate and new
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structures arise away from the boundaries. Only recently, a
three-dimensional linear stability analysis of the two-
dimensional cavity flow with periodic boundary conditions
in the spanwise direction has been carried out by Albensoe-
der and Kuhlmann [6].

A description of the self-similar structure of the eddies
near the corners was given by Moffat [21], Pan and Acrivos
[7], and Kelmanson and Lonsdale [19]. A physical descrip-
tion of the mechanism for the formation of the corner
eddies was given in Ref. [2]. They found that when the wall
jet, that forms on the downstream wall of the cavity,
encounters the pressure gradient induced by the corner,
separation occurs, resulting in the formation of a second-
ary eddy in the corner. Koseff and Street [11] and Prasad
and Koseff [8] found that the flow in a lid-driven cavity is
strongly affected by aspect ratio of the cavity and that this
effect is different for low and high Reynolds numbers. The
recent experiments of Migeon et al. [22] and Guermond
et al. [23] focused on the transient development of cavity
flows. They concluded that the shallower the cavity, that
is larger the aspect ratio, the sooner the pressure gradient
imposed by the depth of the cavity was felt by the growing
corner vortex and the sooner steady state was reached.

The previous studies of two-sided lid-driven cavity are
focused on steady state flows. In this work, we study the
temporal evolution of this flow, in which we also include
the compressibility effects. Some practical applications of
a two-sided lid-driven cavity suggest that compressibility
effects may be significant to the flow. Yet, although this
flow has been studied extensively, the compressibility
effects have never been taken into consideration. A further
extension of the present work (Part II, Ref. [24]) will be to
study the effect of different walls temperatures, as it is of
great interest in applications such as coating and drying
processes. There, the boundary conditions will be modified
from a homogenous temperature boundary condition
domain to a higher temperature at one of the moving walls
and a lower temperature at the other moving wall com-
pared to the initial temperature.

In the next section, the governing equations and numer-
ical method are presented. Section 3 is dedicated to discus-
sions of the flow for cases with different Reynolds numbers,
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Fig. 1. Schematic diagram of the
aspect ratios, and Mach numbers, respectively. Finally,
concluding remarks are provided in Section 4.

2. Formulation and methodology

We consider the two-dimensional, two-sided lid-driven
cavity flow with initially uniform temperature Ti and all
the four surrounding walls at rest as shown in Fig. 1.
The velocity boundary conditions are employed on the
two vertical walls, by giving them the same magnitude of
velocity Vwall, but in opposite directions in order to have
anti-parallel wall motion, i.e. Vw,right = �Vwall and Vw,left =
Vwall. The u velocity component for the moving walls is
zero. We refer to the two moving walls as the left and right
moving walls. Therefore, since the temperatures of the
moving and stationary walls are the same as the initial
temperature, the temperature boundary conditions can be
written as Tw,right = Tw,left = Ti.

For the rectangular cavity, the horizontal and vertical
wall lengths are defined as, Lw,top = Lw,bottom = Lh and
Lw,left = Lw,right = Lv. The length of the vertical or moving
walls Lv is the reference length and the aspect ratio C =
Lh/Lv of the domain is changed by changing the length
of the horizontal or stationary walls Lh. We take C P 1
for all our simulations.

We deal with the subsonic region of the compressible
fluid flow. Throughout the domain, the Mach number is
always kept less than 0.8, so as not to venture into the tran-
sonic region in order to avoid shocks. If two opposite walls
moving in anti-parallel motion drive the flow, the resulting
flow pattern is not unique. A multitude of flow patterns are
expected to occur. The flow structures depend sensitively
on the aspect ratio of the cavity, the boundary conditions
and the Reynolds number. The effect of these parameters
on flow pattern is investigated in detail in this work and
in Part II [24].

2.1. Governing equations

We assume a Newtonian ideal gas with zero bulk visco-
sity. The heat flux obeys the Fourier’s law, and the visco-
sity, thermal conductivity and specific heats of the gas are
ll Ti

ll T i

re Ti

Tw,right

Vw,right  = -V wallLv

two-sided lid-driven cavity.
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assumed to be independent of temperature. For numerical
solution of the Navier Stokes equations, the dimensional
form is not favored, since the disparity of the physical
variables can generate undesirable errors. Therefore, all
variables are non-dimensionalized by reference scales of
length L�f ¼ Lv, velocity U �f ¼ V wall, temperature T �f ¼ T i,
and density q�f taken as the constant density of the gas. This
leads to the following non-dimensional continuity, momen-
tum and energy equations

~Qt þ~F a
x þ ~Ga

y ¼
1

Ref

ð~F v
x þ ~Gv

yÞ; ð1Þ

where

~Q ¼

q

qu

qv

qe

2
666664

3
777775
; ~F a ¼

qu

p þ qu2

quv

uðqeþ pÞ

2
666664

3
777775
; ~Ga ¼

qv

quv

p þ qv2

vðqeþ pÞ

2
666664

3
777775
;

ð2Þ

and

~F v ¼

0

s11

s12

us11 þ vs12 þ T x=ðc� 1ÞM2
f Pr

2
6664

3
7775;

~Gv ¼

0

s21

s22

us21 þ vs22 þ T y=ðc� 1ÞM2
f Pr

2
6664

3
7775; ð3Þ

with,

s11 ¼ 2½ux � ðux þ vyÞ=3�;

s22 ¼ 2½vy � ðux þ vyÞ=3�; s12 ¼ vx þ uy : ð4Þ

The total energy per unit volume is given as

qe ¼ p
c� 1

þ qðu2 þ v2Þ=2: ð5Þ

In Eqs. (3) and (4) the subscript on the stress tensor, s,
defines the direction of s and the plane it is acting on,
whereas the subscripts x and y on u, v and T indicate deriv-
atives. The non-dimensionalization gives rise to three non-
dimensional numbers. The reference Reynolds number,
Ref, which indicates the influence of the viscous fluxes as
compared to the advective fluxes, the Prandtl number,
Pr, which is the ratio of the momentum and thermal diffu-
sivities, and the reference Mach number Mf. In this work,
Mf is taken equal to unity, such that the reference velocity
is equal to the reference speed of sound, and Pr = 0.72 is
used. Finally, the ideal gas equation of state in non-dimen-
sional form is given by

p ¼ qT

cM2
f

: ð6Þ
2.2. Numerical considerations

The governing equations are solved using a multi-
domain, staggered-grid, Chebyshev, spectral element code
which has been developed and extensively tested by our
group [25–27]. Standard Chebyshev spectral methods, like
all other spectral methods, applied to compressible flow
problems have some severe restrictions. The computa-
tional domain must be simple enough to map onto a
square in two space dimensions, or a cube in three. In
some cases, to increase spatial resolution, the polynomial
approximation order must be increased. For high orders,
the derivative approximations must be performed with
fast Fourier transform methods in order to be efficient.
In many cases, if matrix multiplication is used instead,
the computational work grows too rapidly with the num-
ber of degrees of freedom to be practical. The basic pre-
mise of a multi-domain method is that these restrictions
can be reduced by subdividing the computational domain
into multiple zones, called sub-domains, on which the
spectral approximation is applied. As a result, the method
can be used on more complex geometries. The use of
lower order approximating polynomials in each sub-
domain means that matrix multiplication can be both effi-
cient and accurate. For more detail discussions of the
method we refer to Refs. [25–27].

The discontinuity of the boundary conditions in the cor-
ners between the stationary and moving boundaries
requires special treatment. To overcome this difficulty,
Kuhlmann et al. [3] used smoothing in these corners. In this
study, the following boundary conditions are used in order
to regularize the problem

v ¼

1�y
0:05

if y > 0:95;

1 if 0:05 6 y 6 0:95;

y
0:05

if y < 0:05;

8>><
>>:

ð7Þ

at x = 0, and

v ¼
� 1�y

0:05
if y > 0:95;

�1 if 0:05 6 y 6 0:95;

� y
0:05

if y < 0:05;

8>><
>>:

ð8Þ

at x = C.
A comprehensive grid resolution and temporal conver-

gence study has been conducted. The results of this study
are reported in Ref. [28] and are not shown here for brev-
ity. A non-uniform grid with 80 spectral elements and poly-
nomial orders of 6, 8 and 10, resulting in 2880, 5120 and
8000 cells, respectively, is used. The grid is compressed near
the walls and stretched towards the center of the cavity. A
quantitative comparison of the steady state converged
results obtained from the spectral element code is con-
ducted with published results ([3], private communication)
for incompressible flow for a case with equal wall temper-
ature boundary condition, C = 1.955, Ma ¼ uM f=

ffiffiffiffi
T
p
¼
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Fig. 2. Comparison with published numerical results for Re = 700.
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0:4, and Re = 800. The comparisons of the results are
shown in Fig. 2 for u and v along the vertical centerline
x = 0.5. The results form spectral element method obtained
with 2880 cells are compared with those from Ref. [3] cal-
culated with a total number of 19,881 cells. The published
results used for comparison here are calculated using a sec-
ond-order finite difference method on an equidistant grid in
the y-direction and a Chebyshev collocation method on
Gauss–Lobatto points in the x-direction.

When the curves of u and v velocity components at
steady state are superposed, it is seen that the center of
the vortex formed, is at the zero velocity point i.e. the cen-
ter of the rectangular domain. (Note that the velocities and
the y coordinate in Fig. 2 are normalized according to the
published results.) This comparison shows excellent agree-
ment with previously published results. From Fig. 2, it can
be concluded that a flow at Mach number of 0.4 shows the
same velocity field as compared to incompressible flow with
all other specifications the same. Simulations conducted for
other Mach numbers suggest that the streamline topologies
do not depend on Mach number for Ma 6 0.4 for the two-
sided lid-driven cavity.
3. Results

3.1. Flow evolution

We begin our discussion of the results by considering the
flow evolution for a case with Re = 700, C = 1.955 and
Ma = 0.4. The two walls are moving in anti-parallel direc-
tions with the same temperature boundary conditions. This
particular combination of Re = 700 and C = 1.955 is
selected in order to study the merging of the two vortices
that are formed near the moving walls. For the range of
Reynolds numbers lower than or equal to 400, the steady
state result is a two-vortex state, as the two smaller vortices
formed near the center of the stationary walls do not have
enough strength to push the larger vortices to combine. For
a higher Reynolds number of Re = 700, flow evolves some-
what differently because of the increase in the strength of
these vortices.

Initially the temperature is constant throughout the
domain, the walls are at rest, and all the velocities are zero.
A simulation is conducted for this case until the flow
reaches a steady state. The streamlines in Fig. 3a–f show
different flow stages with time. Shear stress is exerted by
the moving walls on the fluid, and due to viscosity, there
is shear stress between the layers of fluid. This leads to fric-
tion which eventually causes dissipation of heat due to
which the temperature in the domain changes. A tempera-
ture field thus develops due to a velocity field. The stream-
lines in Fig. 3 are colored by temperature in order to study
the temperature field change along with the velocity field
change.

Due to the movement of the walls, two vortices are
formed adjacent to the moving walls. There is also the for-
mation of two smaller vortices in the middle of the domain,
near the stationary walls, due to the inherent tendency of
the two bigger vortices formed by the moving walls to stay
circular. The clockwise direction of rotation of the two big-
ger vortices is according to the respective moving walls
which direct them. The direction of rotation of the two
smaller vortices is counter-clockwise because of the cou-
pled effect of the two moving larger vortices. Also, all the
four vortices try to shift in clockwise direction. The smaller
vortices have a very high magnitude of vorticity of the
order of 300 units compared to the larger vortices which
have the magnitude of vorticity of the order of 30. The
smaller vortices thus, push the larger vortices in order to
move in the clockwise direction. Again, the two larger vor-
tices have a propensity of remaining in a circular shape. As
time passes, these vortices gain more and more strength,
and tend to become larger. However, due to the bounding
walls and the two smaller vortices pushing them away from
the trailing edges of the moving walls, they have a limita-
tion of growing. The aspect ratio of 1.955 allows the vorti-
ces to come close enough and merge in the end giving rise
to a single stronger elliptical vortex. Meanwhile, the two
smaller vortices in the center move towards the corners
as this merging is taking place. These smaller vortices
increase in size because of the space now available. The
smaller vortices are now close to the respective walls but
have counter-clockwise direction which is opposite to the
direction of rotation of the two walls. Meanwhile, the cen-
ter of the larger vortex now is at the center of the cavity
and it tries to become circular by pushing the smaller ones
to decrease in size. Their sizes decrease with time as the
flow enters the steady state regime. Thus, at steady state,
the elliptical vortex formed after the combination of the
two initial vortices occupies most of the cavity and the size
of the two smaller vortices decreases comparatively. It
should be noted here, that the two smaller vortices which
loose their strength at steady state for a Reynolds number



Fig. 3. Flow evolution for Re = 700: (a) t = 12; (b) t = 27; (c) t = 30; (d) t = 33; (e) t = 37, (f) t = 59. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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of 700, have more strength for a higher Reynolds number
and thus, they are larger in size at steady state.

The heat generation by viscous dissipation leads to a
local temperature increase near the walls. The higher tem-
perature fluid initially forms the two temperature vortices
which combine later. Viscous heating plays an important
role in the dynamics of fluids with strongly temperature-
dependent density because of the coupling between the
energy and momentum equations. When the temperature
gradients induced by viscous heating are very pronounced,
local instabilities may occur and the triggering of second-
ary flows is possible. This effect will be discussed in Part
II [24] in details.
3.2. Reynolds number effect

For a higher Reynolds number flow, the viscous dissipa-
tion is lower, which leads to a lower spatially averaged tem-
perature in the domain. Consequently, the spatially
averaged pressure also decreases for a higher Reynolds
number. Fig. 4 presents the temporal evolution of the spa-
tially averaged pressure P , for different Reynolds numbers
at C = 1.955 and Ma = 0.4. It was discussed earlier that the
two initial vortices do not combine to form a single vortex
for flows with Re 6 400. The P vs. time curve for Re = 400,
is therefore quite smoother compared to that for Re > 400.
The fluctuating parts in the curves for Re > 400, represent
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the time periods when the phenomenon of merging of the
two initial vortices into one takes place. Because the steady
state for a low Reynolds number (Re 6 400) flow, is the
two-vortex stage itself, the flow becomes stable or reaches
equilibrium earlier compared to a higher Reynolds number
(Re > 400) flow.

Now, let us compare only the flows with Reynolds num-
bers ranging from 450 to 1000, that is the Reynolds num-
bers showing a single major vortex at steady state. In this
particular range, it is observed that ‘‘for a flow with higher
Reynolds number, though the formation of single vortex is
earlier compared to that with lower Reynolds number, the
steady state is achieved later”. This statement has two
parts: first dealing with the time of formation of a single
vortex and second dealing with the time of attaining steady
state. Regarding the first part of the statement, because the
two vortices formed initially are moving in the same direc-
tion, the outer layers of the vortices try to merge in order to
gain stability. As a result, the friction between the layers of
fluid decreases which decreases the heat dissipated and
therefore the rate of build-up of spatially averaged temper-
ature decreases. This leads to the decrease in the prelimin-
ary upsurge of the spatially averaged pressure. Notice for
Reynolds numbers ranging from 450 to 1000, that after
an initial build up in the spatially averaged pressure P ,
there is a point in time for every Reynolds number where
the rate of increase of the spatial average of pressure slows
down. This is the time when the two vortices start coming
closer which would eventually lead to the merging of the
two vortices. After the vortices completely merge, giving
rise to a single vortex, the friction between the layers of
the fluid has a sudden decrease and therefore the viscous
dissipation decreases and again, this decrease is reflected
in the spatially averaged temperature and therefore in the
spatially averaged pressure. For a higher Reynolds number
flow, the viscous friction between the layers of fluid in the
domain is less. Therefore, less work is required to merge
the two vortices into one and they combine earlier. The
sharp peak in the P vs. time curve shifts towards smaller
times as Reynolds number increases, indicating that for a
higher Reynolds number in the range of 450 6 Re 6 1000,
the formation of a single vortex is earlier.

Because of a higher Reynolds number, the flow remains
unstable for a longer time compared to a lower Reynolds
number flow. This can be recognized from the P curves
for different Reynolds numbers. When the spatially aver-
aged pressure becomes constant with time, this is the time
of entering the steady state regime. Thus, the second part
of the above statement is verified, that is, in the range of
Reynolds numbers with a single vortex stage, (i.e. 450 6
Re 6 1000), for higher Reynolds numbers, the steady state
is achieved later.

3.3. Aspect ratio effect

In the previous subsection, the effect of Reynolds num-
ber on flow patterns for one particular aspect ratio was dis-
cussed. It was seen that for an aspect ratio of 1.955, when
simulations are run for flows with different Reynolds num-
bers, the lowest Reynolds number at which a single vortex
steady state is obtained is 450. In this subsection, the effect
of aspect ratio on the flow patterns is investigated. First,
the aspect ratio is set to 2.0 and simulations are run for dif-
ferent Reynolds numbers, in order to find the lowest Rey-
nolds number at which a single vortex steady state is
obtained. These cases are simulated for Ma = 0.4. The sig-
nificance of C = 2.0 stems from the observation that the
initial vortices that are formed near the walls tend to grow
to circular shapes bounded by the stationary walls. At
C = 2.0, each vortex can extend to the center of the cavity
to gain a circular shape inside a square box covering half of
the domain. As a result, for C = 2.0, the chances of direct
interactions between two vortex should be noticeably smal-
ler than that in the case with C = 1.955.

Simulations for larger Reynolds numbers for aspect
ratio of 2.0 show that a single vortex steady state does
not appear until a Reynolds number as high as 1400. At
Re = 1500, a single vortex stage is seen at steady state.
As discussed earlier in detail, the two vortices formed ini-
tially in the rectangular cavity, tend to merge in order to
gain stability. It is easier for the two smaller vortices in
the center to combine together owing to larger space avail-
able, than to move towards the corners of the cavity which
would eventually lead to the combination of the two larger
vortices into one. (This results in a three-vortex situation
which will be discussed later in this subsection.) Also,
because of a higher C, the two vortices formed initially,
have to travel more to come close enough. So, in order
to merge, more vortex strength, provided by a higher Rey-
nolds number, is required. As a result, the lowest Reynolds
number which gives a single vortex steady state, would be
higher for a higher C.

If C is increased steadily from 1.5 to 2.0, the lowest Re at
which a single vortex stage appears also increases steadily.
However, as C approaches 2.0, i.e. at C = 1.955, the Re at



Table 1
Combination time for primary vortices for different aspect ratios

C 1.0 1.5 1.85 1.955 2.0
Combination time 5 9 16 30 NA
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which the first appearance of single vortex steady state
occurs, is interestingly very low compared to that for
C = 2.0. A modest increase of approximately 2.2% (i.e.
from 1.955 to 2.0) in C leads to a difference of about
230% in Reynolds number (450–1500) [3]. This shows that
a very small change in the aspect ratio can cause vigorous
changes in flow patterns, and suggests that the effect of
Reynolds number is different for high and low aspect
ratios.

In Fig. 5, the variation of the time derivative of spatially
averaged pressure, i.e. dP

dt , is shown as a function of time.
This derivative is chosen here instead of P , to magnify
the changes occurred at Re = 1500. It can be easily verified
from the figure that there is a drastic change in the curve
for Re = 1500 compared to the smooth curves for the lower
Reynolds numbers. The fluctuation in the curve for
Re = 1500 is exactly during the time when the two vortices
merge into one. Further simulations showed that, for
aspect ratio 2.5, the vortices do not combine at a Reynolds
number as high as 3200. This again verifies the conclusion
that, a very small change in the aspect ratio can cause vig-
orous changes in flow patterns.

The time of merging of the two vortices into one during
flow evolution also depends on the aspect ratio. To elabo-
rate, for Re = 700 and Ma = 0.3, we consider results for
various aspect ratios. A change in C of about 0.2% (i.e.
from C = 1.955 to C = 1.96) brings about a 3% change in
the time of combination of the two vortices into one. For
C = 1.5, a single vortex stage is seen at about 9 time units,
while for C = 1.955, this stage is not seen till 30 time units.
There is a major difference of time period of combination
of two vortices into a single vortex stage for these two
aspect ratios. Here, a 30% difference in aspect ratios, has
brought almost a 230% difference in the time of combina-
tion of the two vortices into one. Thus, the percentage
increase in the time period required for the two vortices
to combine is approximately 8 times the percentage
increase in the aspect ratios. Some of the other time periods
of combination of two-vortices into one are shown in Table
1. It is obvious from the table that as the aspect ratio
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Fig. 5. Comparison of dP
dt for different Reynolds numbers when C = 2.0.
increases between 1.0 and 2.0, the time of combination of
two-vortices into one increases. However, it is interesting
to see that, as we approach C = 2.0, a smaller change in
C brings about a larger change in the time of combination.
The reason for this is the tendency of a vortex to stay cir-
cular. A square cavity is better suited for a flow field to
form into a circular vortex compared to a rectangular cav-
ity. So as the aspect ratio increases from 1.0 to 1.5, it
becomes harder for the vortices to combine and, therefore,
they take more time (or a higher Reynolds number) to
combine. A rectangular cavity with an aspect ratio of 2.0,
acts like two square cavities and, therefore, it is easier for
a two-vortex stage to stay as compared to a cavity with
1.5 < C < 2.

Fig. 6 shows the steady state topologies for cases with
the same Reynolds number but different aspect ratios.
(Streamlines are colored by v-velocity in the figure.) For
an aspect ratio up to 1.955, the steady state obtained is a
single vortex stage. For a higher aspect ratio of 2.0, during
flow evolution, the single vortex stage is never achieved.
For C P 2, it is easier for the two smaller vortices in the
center to combine with each other, rather than to move
towards the corners of the cavity. Because of a very high
aspect ratio, that is a very large distance between the two
moving walls guiding the flow, the two larger vortices
formed in the beginning are also not close enough to com-
bine. With the passage of time, the vortices gain more and
more strength, and tend to increase in size. But due to the
inborn tendency of a vortex to stay round, the two vortices
can elongate only up to a certain limit. The two smaller ini-
tial vortices seen in the center of the cavity near the station-
ary walls combine for a higher aspect ratio of 2.5.
Therefore, there is the formation of one more vortex in
the center of the cavity which is again guided by the cou-
pled effects of the moving vortices. This steady state is
called a three-vortex stage (see Fig. 6f).
3.4. Mach number effect

A study on Mach numbers ranging from 0.1 to 0.4 for a
Reynolds number of 700 and aspect ratio of 1.955 is under-
taken. The Mach number is changed by varying the initial
temperature, as listed in Table 2. The u velocity plots along
the horizontal centreline, i.e. the line y = 0.5, and vertical
centerline, i.e. the line x = 0.978, (Figs. 7a and 8a), show
that there is no effect of Mach number on the velocity com-
ponents. The u velocity is zero at the walls and maximum in
magnitude in the outer layers of fluid forming the vortex.
The v velocity, (not shown) is zero at the stationary or hor-
izontal walls and maximum in magnitude along the moving



Fig. 6. Streamlines at steady state for Re = 700: (a) C = 1.0; (b) C = 1.5; (c) C = 1.85; (d) C = 1.955; (e) C = 2.0; (f) C = 2.5. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Values of Ti corresponding to Ma

Ma 0.1 0.2 0.3 0.4
Ti 100.0 25.0 11.11 6.25
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or vertical walls. Near the moving walls, the velocity gradi-
ents are high.

The temperatures at steady steady state, normalized by
the initial temperatures are compared in Figs. 7(b) and
8b. The compressibility effects increase with an increase
in the Mach number and, therefore, Ma = 0.4 shows the
highest differences in the temperature fields. The flow
regions having the maximum velocity gradients experience
the highest viscous dissipation and thus the maximum tem-
perature. A close examination of Fig. 7b reveals that for
Ma = 0.4 the minimum temperature occurs at the center
of the elliptical vortex. In contrast, along the vertical cen-
terline, the temperature at the center of the vortex is max-
imum. The moving walls provide the driving force for the
vortex. In the horizontal direction, because the velocity at
the center of a vortex is minimum, the friction between
the layers of fluids is minimum. The heat dissipated, there-
fore, is less and so is the temperature. The temperature is
seen to shoot up near the moving walls. The viscous fric-
tion near the moving walls is the highest compared to



0 0.5 1 1.5
x

0.999

1.004

1.009

1.014

p

0 0.5 1 1.5
x

–0.2

–0.1

0

0.1

0.2

u

Ma=0.1

Ma=0.2

Ma=0.3

Ma=0.4

0 0.5 1 1.5
x

0.999

1.004

1.009

T

0 0.5 1 1.5
x

0.989

0.994

0.999

1.004

1.009

ρ

Fig. 7. Effect of Mach number on the flow parameters along the horizontal centerline y = 0.5.

0 0.2 0.4 0.6 0.8 1
y

0.999

1.001

1.003

p

Ma=0.1
Ma=0.2
Ma=0.3
Ma=0.4

0 0.2 0.4 0.6 0.8 1
y

–0.5

–0.3

–0.1

0.1

0.3

0.5

u

0 0.2 0.4 0.6 0.8 1
y

0.999

1.004

1.009

T

0 0.2 0.4 0.6 0.8 1
y

0.99

0.995

1

1.005

ρ

Fig. 8. Effect of Mach number on the flow parameters along the vertical centerline x = 0.978.

P. Shah et al. / International Journal of Heat and Mass Transfer 50 (2007) 4206–4218 4215



Tw,left = T i

V w,left = -V wall

y,v

x,u

O

Lv

Tw,left = T i

Vw,left = 0

   y,v

x,u

O

Lv

Vwall

Ti

Ti
y y

Boundary layer thickness Boundary layer thickness

Fig. 9. Schematic diagram of: (a) numerical and (b) theoretical models for
comparison of the boundary layers.

4216 P. Shah et al. / International Journal of Heat and Mass Transfer 50 (2007) 4206–4218
any other part in the domain because of high velocity gra-
dients. Therefore, the high temperature outside of the vor-
tex along the horizontal centerline can be attributed to the
v velocity of the moving walls.

The compressibility effects on local pressure near the
moving walls and in the center of the large vortex are visu-
alized by comparing the pressure along the horizontal cen-
terline (Fig. 7c) and the vertical centerline (Fig. 8c). The
local pressures for different Mach numbers are compared
after normalizing them with the respective initial pressures.
It is seen that pressure is minimum at the center of the vor-
tex and maximum on the outer edges of the vortex. This
can be attributed to the centrifugal force of the rotating
vortex. This difference in pressures at the center and near
the outer edges is higher for a higher Ma because of higher
compressibility effects. The pressure is higher near the mov-
ing walls compared to the stationary walls, consistently
with the behavior of the temperature. The spatial average
of density in the entire cavity is constant due to the conser-
vation of mass. The density along the horizontal centerline
is plotted in Fig. 7d and along the vertical centerline in
Fig. 8d. The plots suggest that the center of the vortex is
the place with the minimum density. This can again be
attributed to the centripetal force of the rotating vortex.
Due to the centripetal force, fluid is pushed towards the
periphery of the vortex and, therefore, the density at the
center of a vortex is minimum. There is a sharp increase
in density at the moving wall as seen in Fig. 7d. This sharp
increase in density can be attributed to the sharp decrease
in temperature at this location. As expected compressibility
effects are more pronounced for Ma = 0.4. Nearly 1% var-
iation in density is observed at this Mach number.

3.5. Boundary layer study

Next, a detailed study on the formation of velocity and
thermal boundary layers along the walls of the domain and
the effects of Reynolds number and Mach number on the
thicknesses of the boundary layers is provided. The flow
field close to the walls can be compared to flow over a flat
plate. There is a formation of velocity boundary layer
along the walls. A u-velocity boundary layer is seen on hor-
izontal walls and a v-velocity boundary layer is observed on
vertical walls. Shear stresses in the boundary layer dissipate
some kinetic energy into heat and alter the temperature of
the fluid. Thus, the velocity field in the domain gives rise to
a thermal boundary layer.

In order to provide a comparison with theory, the sys-
tem composed of one of the moving walls of the cavity
against fluid is assumed to be comparable to the system
of laminar flow over a flat plate at zero angle of incidence.
The numerical model involving the comparison of bound-
ary layers is the left wall which is moving in the negative
y direction and the corresponding theoretical model is that
of the flow over a flat plate in the positive y direction
(Fig. 9). The flow inside a two-sided lid-driven cavity with
a Reynolds number of 700 is considered and the thermal
and velocity boundary layer thicknesses at the moving
walls are found. The Mach number is 0.1, such that the
flow can be assumed incompressible. The thermal and
velocity boundary layer thicknesses for the incompressible
flow over a flat plate are obtained from the theory for the
same Reynolds number of 700. These two sets of velocity
and thermal boundary layers are then compared to numer-
ical results at the horizontal centerline (y = 0.5) near the
left moving wall (x = 0) of the cavity.

For comparison with theory, we consider the Blasius
solution which deals with laminar incompressible bound-
ary layer around a stationary flat plate. Let dV and dT

denote the velocity and temperature boundary layers thick-
nesses, respectively. The Blasius equations giving the orders
of dV and dT for Pr� 1 at a distance y from the leading
edge of the flat plate are [29]

dV � Re�
1
2y; dT � Re�

1
2Pr�

1
2y: ð9Þ

On a flat plate, suppose the line (0, y), the velocity and ther-
mal boundary layer thicknesses are calculated by the simi-
larity solution and Pohlhausen’s experimental results. By
the similarity solution available for incompressible bound-
ary layer on a flat plate with Pr > 0.5,

dV ¼ 4:92Re�
1
2y; dT ¼ 0:332Re�

1
2Pr�

1
3y: ð10Þ

These equations yield dV = 0.093 and dT = 0.034 theoreti-
cally which are close to the numerically obtained respective
values of 0.087 and 0.044. Thus, it is found that the thermal
and velocity boundary layer thicknesses obtained numeri-
cally for our model are of the same order of magnitude
as the theoretical respective boundary layer thicknesses
for a flat plate in incompressible flows. The difference of
about 7% for the velocity boundary layer is because the
comparison of the numerical results is made with a flat
plate and it is assumed that there are no other secondary
flows present. However, for our case, near the y = 0 corner,
there is flow in the x-direction. The larger difference, about
30%, for the thermal boundary layer is also not unreason-
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able because of the physical differences in the two systems.
The theory considers a flat plate at Ti exposed to a flow of
gas at a different temperature, whereas in the numerical
simulation the temperature difference arises from viscous
dissipation.

Fig. 10 shows the variation of various boundary layers
with Reynolds number. A lower Reynolds number, keeping
density and velocity constant, implies employing a higher
viscosity. Fig. 10a shows that the magnitude of dv

dx is smaller
for a lower Reynolds number. Thus the velocity boundary
layer thickness increases for a lower Reynolds number.
Higher viscosity also means higher resistance and therefore
higher friction between the layers of a fluid. Thus, there is a
greater amount of viscous dissipation which leads to a lar-
ger thickness of the thermal boundary layer. The higher the
temperature, the lower the density, therefore, the density at
the boundary follows an inverse trend as temperature.
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0 0.05 0.1 0.15 0.2 0.25
x

0.999

Ma=0.1
Ma=0.2
Ma=0.3
Ma=0.4

Fig. 11. Effect of Mach number on boundary layer: (a) density boundary
layer and (b) temperature boundary layer.
From the numerical results, it is inferred that as the Rey-
nolds number increases from 450 to 1000, the velocity
boundary layer thickness and the thermal boundary layer
thickness decrease by about 35%. From Eq. (10), this per-
centage decrease in the velocity and thermal boundary lay-
ers thicknesses is 33%.

The effects of Mach number on density and temperature
boundary layers are shown in Fig. 11. There is no apprecia-
ble effect of Mach number on the velocity boundary layer.
The effect of Mach number on boundary layer is studied
along the line y = 0.5 near the left moving, i.e. x = 0, wall.
The temperatures at steady state, normalized by the initial
temperatures are compared. The differences in temperature
and density boundary layers for different Mach numbers
are within 1% and suggest small compressibility effects in
the cavity flow for Ma 6 0.4.
4. Conclusions

The viscous, compressible flow in a two-dimensional lid-
driven cavity is studied numerically using a Chebyshev
multi-domain spectral element method. Resolution study
is conducted and grid independence, convergence in time
as well as agreement with published results is achieved. Vis-
cous dissipation leads to the increase of the spatially aver-
aged temperature and pressure in the domain. When the
heat transfer from the walls balances the viscous dissipa-
tion, the system reaches equilibrium and steady state is
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achieved. This is when the spatial averages of pressure and
temperature become constant.

Due to the movement of walls, two vortices are formed
near the moving walls. There is also a formation of two
smaller vortices in the middle of the domain, near the sta-
tionary walls, due to the inherent tendency of the two big-
ger vortices formed by the moving walls to stay circular.
This is the steady state flow for a Reynolds number less
than 400 for an aspect ratio of 1.955. The direction of rota-
tion of the two bigger vortices is according to the respective
moving walls which direct them, i.e. clockwise for the cav-
ity in this study, but the direction of rotation of the two
smaller vortices is counter-clockwise. For higher Reynolds
numbers, the two-vortex stage is not a stable one. The two
vortices merge in the end giving rise to a single stronger
elliptical vortex. In the range of Reynolds numbers higher
than 400, at higher Reynolds numbers, the time period of
formation of a single vortex is earlier compared to that
at a lower Reynolds number. Also, for a higher Reynolds
number case, the flow enters the steady state regime later
compared to a lower Reynolds number case. There is a
decrease in the thicknesses of the velocity and temperature
boundary layers with an increase in Reynolds number. The
thicknesses of these boundary layers for a Mach number of
0.1 obtained numerically, are of the same order of magni-
tude as those obtained from the theory for incompressible
flow on a flat plate. A very small change in the aspect ratio
could bring vigorous changes in flow patterns. The single-
vortex steady state is seen for a Reynolds number as low
as 450 for an aspect ratio of 1.955. But this stage does
not appear for a Reynolds number as high as 1400 for an
aspect ratio of 2.0. For a very high aspect ratio, e.g. 2.5,
a three-vortex stage is observed at steady state.
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